
 A Process for Data Storage security in Cloud
Computing

Durgarajesh Rachamsetty, Prof Ramakrishna Rao TK

Department of Information Technology
Aditya Inistitue of Technology and Management

JNTU KAKINADA

Abstract— Cloud computing can be defined as a new style
of computing in which dynamically scalable and often
virtualized resources are provided as services over the
internet. With cloud computing technology, users use a
variety of devices, including PCs, laptops, smart phones,
and PDAs to access programs, storage, and application-
development platforms over the Internet, via services
offered by cloud computing providers. Advantages of
cloud computing technology include cost savings, high
availability, and easy scalability. Cloud computing moves
the application software and data bases to the large data
centres, where administration of the data and services may
not be fully trustworthy. This unique aspect, however,
poses many new security challenges which have not been
well understood. In this article, we focus on cloud storage
security, which has always been important feature of
quality of service. To ensure the correctness of users data
in the cloud, we suggest an effective and flexible technique
for managing the data storage technology in the secure
way. By utilizing the PMAR homorphic encryption
algorithm with dispersed authentication of erasure coded
data , our scheme achieves the incorporation of storage
correctness insurance and data error localization. i.e, the
identification of misbehaving server.

Keywords— cloud computing, data integrity, storage
process.

I. INTRODUCTION

Several trends are opening up the era of Cloud
Computing, which is an Internet-based development and
use of computer technology. The ever cheaper and more
dominant processors, together with the software as a
service (SaaS) computing architecture, are transforming
data centres into pools of computing service on a huge
scale. The escalating network bandwidth and reliable
yet flexible network connections make it even possible
that users can now pledge high quality services from
data and software that reside exclusively on secluded
data centres. Moving data into the cloud offers great
expediency to users since they don’t have to care about
the complexities of direct hardware management. The
pioneer of Cloud Computing vendors, Amazon Simple
Storage Service (S3) and Amazon Elastic Compute
Cloud (EC2) [1] are both well known examples. While
these internet-based online services do offer huge
amounts of storage space and customizable computing
resources, this computing platform shift, however, is
eliminating the responsibility of local machines for data
maintenance at the same time. As a result, users are at
the mercy of their cloud service providers for the
accessibility and veracity of their data. Recent
downtime of Amazon’s S3 is such an example [2]. From

the perception of data security, which has always been
an important phase of quality of service, cloud
computing predictably poses new challenging security
threats for number of reasons.

II. PROBLEM STATEMENT

A. System Model

A representative network architecture for cloud data
storage is illustrated in Figure 1. Three different
network entities can be identified as follows:

Fig. 1: Cloud data storage architecture

· User: users, who have data to be stored in the cloud
and rely on the cloud for data computation, consist of
both individual clients and organizations.

· Cloud Service Provider (CSP): a CSP, who has
considerable resources and proficiency in building and
managing dispersed cloud storage servers, owns and
operates live Cloud Computing systems. Third Party
Auditor (TPA): an not obligatory TPA, who has
proficiency and capabilities that users may not have, is
trusted to review and expose risk of cloud storage
services on behalf of the users upon demand.

In cloud data storage, a user stores his data through a
CSP into a set of cloud servers, which are running in a
synchronized, cooperated and disseminated approach.
Data redundancy can be engaged with practice of
erasure-correcting code to auxiliary tolerate faults or
server crash as user’s data grows in size and
significance. Thereafter, for application purposes, the
user interacts with the cloud servers via CSP to access
or recover his data. In some cases, the user may need to
execute block level operations on his data. The most
common forms of these operations we are considering
are block update, delete, insert and append. As users no
longer acquire their data in the vicinity, it is of
significant importance to guarantee users that their data
are being appropriately stored and maintained. That is,
users should be outfitted with defines means so that they

 Durgarajesh Rachamsetty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2894-2897

2894

can make incessant precision assurance of their stored
data even without the subsistence of local copies. In
case that users do not inevitably have the time, viability
or resources to scrutinize their data, they can entrust the
tasks to an optional trusted TPA of their relevant
choices. In our model, we assume that the point-to-point
communication channels between each cloud server and
the user is legitimate and consistent, which can be
achieved in practice with little overhead. Note that we
don’t address the issue of data seclusion in this paper, as
in Cloud Computing, data privacy is orthogonal to the
dilemma we study here.

B. Design Goals

To ensure the security and fidelity for cloud data storage
under the aforesaid antagonist model, we aim to design
efficient mechanisms for dynamic data verification and
operation and achieve the following goals: (1) Storage
correctness: to ensure users that their data are indeed
stored appropriately and kept unharmed all the time in
the cloud. (2) Fast localization of data error: to
effectively locate the faulty server when data corruption
has been erected. (3) Dynamic data support: to maintain
the same level of storage correctness assurance even if
users modify, delete or append their data files in the
cloud. (4) Dependability: to enhance data availability
against Intricate failures, malevolent data modification
and server colluding attacks, i.e. minimizing the effect
brought by data errors or server failures. (5) Lightweight:
to enable users to perform storage correctness checks
with minimum overhead.

III. ENSURING CLOUD DATA STORAGE

 In cloud data storage system, users store their data in
the cloud and no longer possess the data locally. Thus,
the correctness and availability of the data files being
stored on the distributed cloud servers must be
guaranteed. One of the key issues is to effectively detect
any unauthorized data modification and corruption,
possibly due to server compromise and/or random
Byzantine failures. Besides, in the distributed case when
such inconsistencies are successfully detected, to find
which server the data error lies in is also of great
significance, since it can be the first step to fast recover
the storage errors. To address these problems, our main
scheme for ensuring cloud data storage is presented in
this section. The first part of the section Then, the
homomorphic token is introduced. IT defines The
common theme is that a homomorphism is a function
between two algebraic objects that respects the algebraic
structure. The token computation function we are
considering belongs to a family of universal hash
function [11], chosen to preserve the homomorphic
properties, which can be perfectly integrated with the
verification of erasure-coded data [8] [12]. Subsequently,
it is also shown how to derive a challenge response
protocol for verifying the storage accuracy as well as
identifying misbehaving servers. Finally, the method for
file reclamation and error recuperation based on erasure-
correcting code is outlined.

Algorithm 1 : TOKEN PRE-COMPUTATION

1: procedure

2: Choose parameters l, n and function f, Ø;

3: Choose the number t of tokens;

4: Choose the number r of indices per verification;

5: Generate master key Kprp and challenge kchal;

6: for vector G(j), j ← 1, n do

7: for round i← 1, t do

8: Derive α i = fkchal (i) and kprp(i) from Kprp .

9: Compute vi
(j) = ∑r

q=1 αi
q * G(j) [φ k

(i) prp (q)]

10: end for

11: end for

12: Store all the vis locally.

13: end procedure

Before file distribution the user pre-computes a certain
number of short verification tokens on individual vector
G(j) (j € {1,2,3 ….. , n}), each token covering a random
subset of data blocks. Later, when the user wants to
make sure the storage correctness for the data in the
cloud, he challenges block indices. Upon receiving
challenge, each cloud server computes a short
“signature” over the particular blocks and returns them
to the user. The values of these signatures should match
the corresponding tokens pre-computed by the user.
Meanwhile, as all servers operate over the same subset
of the indices, the requested response values for
integrity check must also be a valid codeword
determined by secret matrix P. Suppose the user wants
to challenge the cloud servers t times to ensure the
correctness of data storage. Then, he must pre-compute t
verification tokens for each G(j) (j � {1, . . . , n}), using
a PRF f(·), a PRP f(·), a challenge key kchal and a
master Permutation key KPRP . We are applying map
reduce algorithm to homomorphic algorithm. A private-
key MR-parallel F-homomorphic encryption scheme is
a tuple of polynomial-time algorithms PHE = (Gen;
Enc; Eval; Dec), where (Gen; Enc; Dec) are as in a
private- key encryption scheme and Eval = (Parse;
map; Part; Red; Merge) is a MapReduce algorithm.
More precisely we have:

Algorithm 2: applying map reduce process to
homomorphic.

1. Procedure
2. K Gen(1k): is a probabilistic algorithm that

takes as input a security parameter k and that
returns a key K.

3. C Enc(K; x): is a probabilistic algorithm that
takes as input a key K and an input x from
some message space X, and that returns a
ciphertext c. We sometimes write this as c
Enck(x).

 Durgarajesh Rachamsetty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2894-2897

2895

4. (li, vi)i Parse(f; c): is a deterministic
algorithm that takes as input a function f € F
and a ciphertext c, and that returns a sequence
of input pairs.

5. (i ; j)j Map(l, v): is a (possibly probabilistic)
algorithm that takes an input pair (l, v) and that
returns a sequence of intermediate pairs.

6. HPart(I, j): is a (possibly probabilistic)
algorithm that takes as input an intermediate
pair (I,j) and that returns a value h in some
space H.

7. (I, z)Red(I, P): is a (possibly probabilistic)
algorithm that takes a label _ and a partition P
of intermediate values and returns an output
pair (I, z).

8. C1 Merge((it, zt)): is a deterministic
algorithm that takes as input a set of output
pairs and returns a ciphertext c1.

9. YDec(K; c1): is a deterministic algorithm
that takes a key K and a ciphertext c0 and that
returns an output y. We sometimes write this as
y DecK(c1).

10. End procedure.

for all k € N, for all f € Fk, for all K output by Gen(1k),
for all x € X, for all c output by EncK(x), DecK (Eval(f,
c))= f(x).

Algorithm 3: File Retrieval and Error Recovery

1. Procedure
% Assume the block corruptions have been
detected among
% the specified r rows;
% Assume s ≤ k servers have been identified
Misbehaving.

2. Download r rows of blocks from servers;
3. Treat s servers as erasures and recover the

Blocks.
4. Resend the recovered blocks to corresponding

servers.
5. End procedure.

Since our layout of file matrix is systematic, the user
can reconstruct the original file by downloading the data
vectors from the first m servers, assuming that they
return the correct response values. Notice that our
verification scheme is based on random spot-checking,
so the storage correctness assurance is a probabilistic
one. However, by choosing system parameters (e.g., r, l,
t) appropriately and conducting enough times of
verification, we can guarantee the successful file
retrieval with high probability. On the other hand,
whenever the data corruption is detected, the
comparison of pre-computed tokens and received
response values can guarantee the identification of
misbehaving server(s), again with high probability,
which will be discussed shortly. Therefore, the user can
always ask servers to send back blocks of the r rows
specified in the challenge and reinforce the correct

blocks by erasure correction, shown in Algorithm 3, as
long as there are at most k misbehaving servers are
acknowledged. The newly recovered blocks can then be
re dispersed to the misbehaving servers to maintain the
correctness of storage.

IV. PROVIDING DYNAMIC DATA OPERATION

SUPPORT
So far, we assumed that F represents static or archived
data. This model may fit some application scenarios,
such as libraries and scientific datasets. However, in
cloud data storage, there are many potential scenarios
where data stored in the cloud is dynamic, like
electronic documents, photos, or log files etc. Therefore,
it is crucial to consider the dynamic case, where a user
may wish to perform various block-level operations of
update, delete and append to modify the data file while
maintaining the storage correctness assurance. The
straightforward and trivial way to support these
operations is for user to download all the data from the
cloud servers and re-compute the whole parity blocks as
well as verification tokens. This would clearly be highly
inefficient. In this section, we will show how our
scheme can explicitly and efficiently handle dynamic
data operations for cloud data storage.

V. RELATED WORK
Juels et al. [3] described a formal “proof of
retrievability” (POR) model for ensuring the remote
data integrity. Their scheme combines spot-checking
and error-correcting code to ensure both possession and
retrievability of files on archive service systems.
Shacham et al. [4] built on this model and constructed a
random linear function based homomorphic
authenticator which enables unlimited number of
queries and requires less communication overhead.
Bowers et al. [5] roposed an improved framework for
POR protocols that generalizes both Juels and
Shacham’s work. Later in their subsequent work,
Bowers et al. [10] extended POR model to dispersed
systems. However, all these schemes are focusing on
static data. The effectiveness of their schemes rests
primarily on the preprocessing steps that the user
conducts before outsourcing the data file F. Any change
to the contents of F, even few bits, must propagate
through the error-correcting code, thus introducing
considerable computation and communication
complexity. Ateniese et al. [6] defined the “provable
data possession” (PDP) model for ensuring possession
of file on untrusted storages. Their scheme utilized
public key based homomorphic tags for auditing the
data file, thus providing public verifiability. However,
their scheme requires sufficient computation overhead
that can be expensive for an entire file. In their
subsequent work, Ateniese et al. [7] described a PDP
scheme that uses only symmetric key cryptography.
This routine has lower-overhead than their previous
scheme and allows for block updates, deletions and
appends to the stored file, which has also been
supported in our work. However, their scheme focuses
on single server scenario and does not address small

 Durgarajesh Rachamsetty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2894-2897

2896

data corruptions, leaving both the dispersed scenario
and data error recovery issue unexplored. Curtmola et
al. [15] aimed to ensure data possession of multiple
replicas across the dispersed storage system. They
extended the PDP scheme to cover multiple replicas
without encoding each replica separately, providing
guarantee that multiple copies of data are actually
maintained.
Ateniese et al. [7] are the first to consider public
auditability in their defined “provable data possession”
(PDP) model for ensuring possession of data files on
untrusted storages. Their scheme utilizes the RSA-based
homomorphic authenticators for auditing outsourced
data and suggests randomly sampling a few blocks of
the file. However, the public auditability in their scheme
demands the linear combination of sampled blocks
exposed to external auditor.When used directly, their
protocol is not provably privacy preserving, and thus
may leak user data information to the auditor. Ateniese
et al. [25] propose a partially dynamic version of the
prior PDP scheme that uses only symmetric key
cryptography. However, the system imposes a priori
bound on the number of audits and does not support
public auditability.

VI. CONCLUSION
In this paper, we investigated the problem of data
security in cloud data storage, which is fundamentally a
dispersed storage system. To ensure the correctness of
users’ data in cloud data storage, we proposed an
effective and flexible dispersed scheme with explicit
dynamic data sustain, including block update, delete,
and append. We rely on erasure-correcting code in the
file distribution preparation to provide redundancy
parity vectors and guarantee the data dependability. By
utilizing the parallel Homomorphic token with dispersed
verification of erasure coded data, our scheme achieves
the integration of storage correctness insurance and data
error localization, i.e., whenever data corruption has
been detected during the storage correctness verification
across the dispersed servers, we can almost guarantee
the simultaneous identification of the misbehaving
server(s). MapReduce allows for distributed processing
of the map and reduction operations. Provided each
mapping operation is independent of the others, all maps
can be performed in parallel – though in practice it is
limited by the number of independent data sources
and/or the number of CPUs near each source. Similarly,
a set of 'reducers' can perform the reduction phase -
provided all outputs of the map operation that share the
same key are presented to the same reducer at the same
time. While this process can often appear inefficient
compared to algorithms that are more sequential,
MapReduce can be applied to significantly larger
datasets than "commodity" servers can handle – a large
server farm can use MapReduce to sort a petabyte of
data in only a few hours. The parallelism also offers
some possibility of recovering from partial failure of
servers or storage during the operation: if one mapper or

reducer fails, the work can be rescheduled – assuming
the input data is still available. Through detailed
security and performance analysis, we show that our
scheme is highly efficient and resilient to Intricate
failure, malicious data modification attack, and even
server colluding attacks. We believe that data storage
security in Cloud Computing, an area full of challenges
and of overriding importance, is still in its formative
years now, and many research problems are yet to be
identified. We foresee several possible directions for
future research on this area. The most promising one we
believe is a model in which public verifiability is
enforced. Public. verifiability, supported in [6] [4] [17],
allows TPA to audit the cloud data storage without
challenging users’ time, possibility or resources. An
interesting question in this model is if we can construct
a scheme to achieve both public verifiability and storage
correctness assurance of vibrant data. Besides, along
with our research on dynamic cloud data storage, we
also plan to inspect the quandary of fine-grained data
error localization.

REFERENCES
[1] Amazon.com, “Amazon Web Services (AWS),” Online at
http://aws.amazon.com, 2008.
[2] N. Gohring, “Amazon’s S3 down for several hours,”Onlineat
http://www.pcworld.com/businesscenter/article/142549/amazons s3
down for several hours.html, 2008.
[3] A. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrievability
for Large Files,” Proc. of CCS ’07, pp. 584–597, 2007.
[4] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. of Asiacrypt ’08, Dec. 2008.
[5] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability:
Theoryand Implementation,” Cryptology ePrint Archive, Report
2008/175,
2008, http://eprint.iacr.org/.
[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proc. ofCCS ’07, pp. 598–609, 2007.
[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” Proc. of SecureComm ’08,
pp. 1– 10, 2008.
[8] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check:
Using Algebraic Signatures to Check Remotely Administered
Storage,” Proc. of ICDCS ’06, pp. 12–12, 2006.
[9] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard,
“A Cooperative Internet Backup Scheme,” Proc. of the 2003 USENIX
Annual Technical Conference (General Track), pp. 29–41, 2003.
[10] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
Availability and Integrity Layer for Cloud Storage,” Cryptology ePrint
Archive, Report
2008/489, 2008, http://eprint.iacr.org/.
[11] L. Carter and M. Wegman, “Universal Hash Functions,” Journal
of Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.
[12] J. Hendricks, G. Ganger, and M. Reiter, “Verifying Distributed
Erasurecoded Data,” Proc. 26th ACM Symposium on Principles of
Distributed
Computing, pp. 139–146, 2007.
[13] J. S. Plank and Y. Ding, “Note: Correction to the 1997 Tutorial
on Reed-Solomon Coding,” University of Tennessee, Tech. Rep. CS-
03-
504, 2003.
[14] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and
SecureSensor Data Storage with Dynamic Integrity Assurance,” Proc.
of IEEE
INFOCOM, 2009
[15].http://eprint.iacr.org/2011/596.pdf

 Durgarajesh Rachamsetty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2894-2897

2897

