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Abstract—  Cloud computing can be defined as a new style 
of computing in which dynamically scalable and often 
virtualized resources are provided as services over the 
internet. With cloud computing technology, users use a 
variety of devices, including PCs, laptops, smart phones, 
and PDAs to access programs, storage, and application-
development platforms over the Internet, via services 
offered by cloud computing providers. Advantages of 
cloud computing technology include cost savings, high 
availability, and easy scalability. Cloud computing moves 
the application software and data bases to the large data 
centres, where administration of the data and services may 
not be fully trustworthy. This unique aspect, however, 
poses many new security challenges which have not been 
well understood. In this article, we focus on cloud storage 
security, which has always been important feature of 
quality of service.  To ensure the correctness of users data 
in the cloud, we suggest an effective and flexible technique 
for managing the data storage technology in the secure 
way. By utilizing the PMAR homorphic encryption 
algorithm with dispersed authentication  of erasure coded 
data , our scheme achieves the incorporation of storage 
correctness insurance and data error localization. i.e, the 
identification of misbehaving server. 
 
Keywords— cloud computing, data integrity, storage 
process. 

I. INTRODUCTION 

Several trends are opening up the era of Cloud 
Computing, which is an Internet-based development and 
use of computer technology. The ever cheaper and more 
dominant processors, together with the software as a 
service (SaaS) computing architecture, are transforming 
data  centres into pools of computing service on a huge 
scale. The escalating network bandwidth and reliable 
yet flexible network connections make it even possible 
that users can now pledge high quality services from 
data and software that reside exclusively on secluded 
data centres. Moving data into the cloud offers great 
expediency to users since they don’t have to care about 
the complexities of direct hardware management. The 
pioneer of Cloud Computing vendors, Amazon Simple 
Storage Service (S3) and Amazon Elastic Compute 
Cloud (EC2) [1] are both well known examples. While 
these internet-based online services do offer huge 
amounts of storage space and customizable computing 
resources, this computing platform shift, however, is 
eliminating the responsibility of local machines for data 
maintenance at the  same time. As a result, users are at 
the mercy of  their cloud service providers for the 
accessibility and veracity of their data. Recent 
downtime of Amazon’s S3 is such an example [2]. From 

the perception of data security, which has always been 
an important phase of quality of service, cloud 
computing predictably poses new  challenging security 
threats for number of reasons. 

II. PROBLEM STATEMENT 

A. System Model 

A representative network architecture for cloud data 
storage is illustrated in Figure 1. Three different 
network entities can be identified as follows: 

 
 

Fig. 1: Cloud data storage architecture 

· User: users, who have data to be stored in the cloud 
and rely on the cloud for data computation, consist of 
both individual clients and organizations.  

· Cloud Service Provider (CSP): a CSP, who has 
considerable resources and proficiency in building and 
managing dispersed cloud storage servers, owns and 
operates live Cloud Computing systems. Third Party 
Auditor (TPA): an not obligatory TPA, who has 
proficiency and capabilities that users may not have, is 
trusted to review and expose risk of cloud storage 
services on behalf of the users upon demand. 

In cloud data storage, a user stores his data through a 
CSP into a set of cloud servers, which are running in a 
synchronized, cooperated and disseminated approach. 
Data redundancy can be engaged with practice of 
erasure-correcting code to auxiliary tolerate faults or 
server crash as user’s data grows in size and 
significance. Thereafter, for application purposes, the 
user interacts with the cloud servers via CSP to access 
or recover his data. In some cases, the user may need to 
execute block level operations on his data. The most 
common forms of these operations we are considering 
are block update, delete, insert and append. As users no 
longer acquire their data in the vicinity, it is of 
significant importance to guarantee users that their data 
are being appropriately stored and maintained. That is, 
users should be outfitted with defines means so that they 
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can make incessant precision assurance of their stored 
data even without the subsistence of local copies. In 
case that users do not inevitably have the time, viability 
or resources to scrutinize their data, they can entrust the 
tasks to an optional trusted TPA of their relevant 
choices. In our model, we assume that the point-to-point 
communication channels between each cloud server and 
the user is legitimate and consistent, which can be 
achieved in practice with little overhead. Note that we 
don’t address the issue of data seclusion in this paper, as 
in Cloud Computing, data privacy is orthogonal to the 
dilemma we study here. 

B. Design Goals 

To ensure the security and fidelity for cloud data storage 
under the aforesaid antagonist model, we aim to design 
efficient mechanisms for dynamic data verification and 
operation and achieve the following goals: (1) Storage 
correctness: to ensure users that their data are indeed 
stored appropriately and kept unharmed all the time in 
the cloud. (2) Fast localization of data error: to 
effectively locate the faulty server when data corruption 
has been erected. (3) Dynamic data support: to maintain 
the same level of storage correctness assurance even if 
users modify, delete or append their data files in the 
cloud. (4) Dependability: to enhance data availability 
against Intricate failures, malevolent data modification 
and server colluding attacks, i.e. minimizing the effect 
brought by data errors or server failures. (5) Lightweight: 
to enable users to perform storage correctness checks 
with minimum overhead.  

III. ENSURING CLOUD DATA STORAGE 

 In cloud data storage system, users store their data in 
the cloud and no longer possess the data locally. Thus, 
the correctness and availability of the data files being 
stored on the distributed cloud servers must be 
guaranteed. One of the key issues is to effectively detect 
any unauthorized data modification and corruption, 
possibly due to server compromise and/or random 
Byzantine failures. Besides, in the distributed case when 
such inconsistencies are successfully detected, to find 
which server the data error lies in is also of great 
significance, since it can be the first step to fast recover 
the storage errors. To address these problems, our main 
scheme for ensuring cloud data storage is presented in 
this section. The first part of the section Then, the 
homomorphic token is introduced. IT defines The 
common theme is that a homomorphism is a function 
between two algebraic objects that respects the algebraic 
structure. The token computation function we are 
considering belongs to a family of universal hash 
function [11], chosen to preserve the homomorphic 
properties, which can be perfectly integrated with the 
verification of erasure-coded data [8] [12]. Subsequently, 
it is also shown how to derive a challenge response 
protocol for verifying the storage accuracy as well as 
identifying misbehaving servers. Finally, the method for 
file reclamation and error recuperation based on erasure-
correcting code is outlined. 

Algorithm 1 : TOKEN PRE-COMPUTATION 

1: procedure 

2: Choose parameters l, n and function f, Ø; 

3: Choose the number t of tokens; 

4: Choose the number r of indices per verification; 

5: Generate master key Kprp and challenge kchal; 

6: for vector G(j), j ← 1, n do 

7: for round i← 1, t do 

8: Derive α i = fkchal (i) and kprp(i) from Kprp . 

9: Compute  vi
(j) = ∑r

q=1  αi
q  * G(j)  [ φ k

(i) prp (q)] 

10: end for 

11: end for 

12: Store all the vis locally. 

13: end procedure 

Before  file distribution the user pre-computes a certain 
number of short verification tokens on individual vector  
G(j) (j € {1,2,3 ….. , n}), each token covering a random 
subset of data blocks. Later, when the user wants to 
make sure the storage correctness for the data in the 
cloud, he challenges block indices. Upon receiving 
challenge, each cloud server computes a short 
“signature” over the particular blocks and returns them 
to the user. The values of these signatures should match 
the corresponding tokens pre-computed by the user. 
Meanwhile, as all servers operate over the same subset 
of the indices, the requested response values for 
integrity check must also be a valid codeword 
determined by secret matrix P. Suppose the user wants 
to challenge the cloud servers t times to ensure the 
correctness of data storage. Then, he must pre-compute t 
verification tokens for each G(j) (j � {1, . . . , n}), using 
a PRF f(·), a PRP f(·), a challenge key kchal and a 
master Permutation key KPRP .  We are applying map 
reduce algorithm to homomorphic algorithm. A private-
key MR-parallel F-homomorphic encryption scheme is 
a tuple of polynomial-time algorithms PHE = (Gen; 
Enc; Eval; Dec), where (Gen; Enc; Dec) are as in a 
private- key encryption scheme and Eval = (Parse;   
map; Part; Red; Merge) is a MapReduce algorithm. 
More precisely we have: 
 
Algorithm 2: applying map reduce process to 
homomorphic. 

1. Procedure 
2. K   Gen(1k): is a probabilistic algorithm that 

takes as input a security parameter k and that 
returns a key K. 

3. C Enc(K; x): is a probabilistic algorithm that 
takes as input a key K and an input x from 
some message space X, and that returns a 
ciphertext c. We sometimes write this as c 
Enck(x). 
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4. (li, vi)i Parse(f; c): is a deterministic  
algorithm that takes as input a function f € F 
and a ciphertext c, and that returns a sequence 
of input pairs. 

5. (i ; j)j Map(l, v): is a (possibly probabilistic) 
algorithm that takes an input pair (l, v) and that 
returns a sequence of intermediate pairs. 

6. HPart(I, j ): is a (possibly probabilistic) 
algorithm that takes as input an intermediate 
pair (I,j) and that returns a value h in some 
space H. 

7. (I, z)Red(I, P): is a (possibly probabilistic) 
algorithm that takes a label _ and a partition P 
of intermediate values and returns an output 
pair (I, z). 

8. C1 Merge((it, zt)): is a deterministic 
algorithm that takes as input a set of output 
pairs and returns a ciphertext c1. 

9. YDec(K; c1): is a deterministic algorithm 
that takes a key K and a ciphertext c0 and that 
returns an output y. We sometimes write this as 
y   DecK(c1). 

10. End procedure. 
 

for all k € N, for all f € Fk, for all K output by Gen(1k), 
for all x € X, for all c output by EncK(x), DecK (Eval(f, 
c))= f(x). 
 
Algorithm 3: File Retrieval and Error Recovery 
 
 

1. Procedure  
% Assume the block corruptions have been 
detected among  
% the specified r rows; 
% Assume s ≤ k servers have been identified 
Misbehaving. 

2. Download r rows of blocks from servers; 
3. Treat s servers as erasures and recover the 

Blocks. 
4. Resend the recovered blocks to corresponding 

servers. 
5. End procedure. 

 
Since our layout of file matrix is systematic, the user 
can reconstruct the original file by downloading the data 
vectors from the first m servers, assuming that they 
return the correct response values. Notice that our 
verification scheme is based on random spot-checking, 
so the storage correctness assurance is a probabilistic 
one. However, by choosing system parameters (e.g., r, l, 
t) appropriately and conducting enough times of 
verification, we can guarantee the successful file 
retrieval with high probability. On the other hand, 
whenever the data corruption is detected, the 
comparison of pre-computed tokens and received 
response values can guarantee the identification of 
misbehaving server(s), again with high probability, 
which will be discussed shortly. Therefore, the user can 
always ask servers to send back blocks of the r rows 
specified in the challenge and reinforce the correct 

blocks by erasure correction, shown in Algorithm 3, as 
long as there are at most k misbehaving servers are 
acknowledged. The newly recovered blocks can then be 
re dispersed to the misbehaving servers to maintain the 
correctness of storage.  
 
IV. PROVIDING DYNAMIC DATA OPERATION  

SUPPORT 
So far, we assumed that F represents static or archived 
data. This model may fit some application scenarios, 
such as libraries and scientific datasets. However, in 
cloud data storage, there are many potential scenarios 
where data stored in the cloud is dynamic, like 
electronic documents, photos, or log files etc. Therefore, 
it is crucial to consider the dynamic case, where a user 
may wish to perform various block-level operations of 
update, delete and append to modify the data file while 
maintaining the storage correctness assurance. The 
straightforward and trivial way to support these 
operations is for user to download all the data from the 
cloud servers and re-compute the whole parity blocks as 
well as verification tokens. This would clearly be highly 
inefficient. In this section, we will show how our 
scheme can explicitly and efficiently handle dynamic 
data operations for cloud data storage.  
 

V. RELATED WORK 
Juels et al. [3] described a formal “proof of 
retrievability” (POR) model for ensuring the remote 
data integrity. Their scheme combines spot-checking 
and error-correcting code to ensure both possession and 
retrievability of files on archive  service systems. 
Shacham et al. [4] built on this model and constructed a 
random linear function based homomorphic 
authenticator which enables unlimited number of 
queries and requires less communication overhead. 
Bowers et al. [5]  roposed an improved framework for 
POR protocols that generalizes both Juels and 
Shacham’s work. Later in their subsequent work, 
Bowers et al. [10] extended POR model to dispersed 
systems. However, all these schemes are focusing on 
static data. The effectiveness of their schemes rests 
primarily on the preprocessing steps that the user 
conducts before outsourcing the data file F. Any change 
to the contents of F, even few bits, must propagate 
through the error-correcting code, thus introducing 
considerable computation and communication 
complexity. Ateniese et al. [6] defined the “provable 
data possession” (PDP) model for ensuring possession 
of file on untrusted storages. Their scheme utilized 
public key based homomorphic tags for auditing the 
data file, thus providing public verifiability. However, 
their scheme requires sufficient computation overhead 
that can be expensive for an entire file. In their 
subsequent work, Ateniese et al. [7] described a PDP 
scheme that uses only symmetric key cryptography. 
This routine has lower-overhead than their previous 
scheme and allows for block updates, deletions and 
appends to the stored file, which has also been 
supported in our work. However, their scheme focuses 
on single server scenario and does not address small 
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data corruptions, leaving both the dispersed scenario 
and data error recovery issue unexplored. Curtmola et 
al. [15] aimed to ensure data possession of multiple 
replicas across the dispersed storage system. They 
extended the PDP scheme to cover multiple replicas 
without encoding each replica separately, providing 
guarantee that multiple copies of data are actually 
maintained. 
Ateniese et al. [7] are the first to consider public 
auditability in their defined “provable data possession” 
(PDP) model for ensuring possession of data files on 
untrusted storages. Their scheme utilizes the RSA-based 
homomorphic authenticators for auditing outsourced 
data and suggests randomly sampling a few blocks of 
the file. However, the public auditability in their scheme 
demands the linear combination of sampled blocks 
exposed to external auditor.When used directly, their 
protocol is not provably privacy preserving, and thus 
may leak user data information to the auditor. Ateniese 
et al. [25] propose a partially dynamic version of  the 
prior PDP scheme that uses only symmetric key 
cryptography. However, the system imposes a priori 
bound on the number of audits and does not support 
public auditability. 
 

VI. CONCLUSION 
In this paper, we investigated the problem of data 
security in cloud data storage, which is fundamentally a 
dispersed storage system. To ensure the correctness of 
users’ data in cloud  data storage, we proposed an 
effective and flexible dispersed scheme with explicit 
dynamic data sustain, including block update, delete, 
and append. We rely on erasure-correcting code in the 
file distribution preparation to provide redundancy 
parity vectors and guarantee the data dependability. By 
utilizing the parallel Homomorphic token with dispersed 
verification of erasure coded data, our scheme achieves 
the integration of storage correctness insurance and data 
error localization, i.e., whenever data corruption has 
been detected during the storage correctness verification 
across the dispersed servers, we can almost guarantee 
the simultaneous identification of the misbehaving 
server(s). MapReduce allows for distributed processing 
of the map and reduction operations. Provided each 
mapping operation is independent of the others, all maps 
can be performed in parallel – though in practice it is 
limited by the number of independent data sources 
and/or the number of CPUs near each source. Similarly, 
a set of 'reducers' can perform the reduction phase - 
provided all outputs of the map operation that share the 
same key are presented to the same reducer at the same 
time. While this process can often appear inefficient 
compared to algorithms that are more sequential, 
MapReduce can be applied to significantly larger 
datasets than "commodity" servers can handle – a large 
server farm can use MapReduce to sort a petabyte of 
data in only a few hours. The parallelism also offers 
some possibility of recovering from partial failure of 
servers or storage during the operation: if one mapper or 

reducer fails, the work can be rescheduled – assuming 
the input data is still available. Through detailed 
security and performance analysis, we show that our 
scheme is highly efficient and resilient to Intricate 
failure, malicious data modification attack, and even 
server colluding attacks. We believe that data storage 
security in Cloud Computing, an area full of challenges 
and of overriding importance, is still in its formative 
years now, and many research problems are yet to be 
identified. We foresee several possible directions for 
future research on this area. The most promising one we 
believe is a model in which public verifiability is 
enforced. Public. verifiability, supported in [6] [4] [17], 
allows TPA to audit the cloud data storage without 
challenging users’ time, possibility or resources. An 
interesting question in this model is if we can construct 
a scheme to achieve both public verifiability and storage 
correctness assurance of vibrant data. Besides, along 
with our research on dynamic cloud data storage, we 
also plan to inspect the quandary of fine-grained data 
error localization. 
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